skip to main content


Search for: All records

Creators/Authors contains: "Cooks, R. Graham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air–water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry. 
    more » « less
  2. Spontaneous oxidation of compounds containing diverse X=Y moieties (e.g., sulfonamides, ketones, esters, sulfones) occurs readily in organic-solvent microdroplets. This surprising phenomenon is proposed to be driven by the generation of an intermediate species [M+H 2 O] +· : a covalent adduct of water radical cation (H 2 O +· ) with the reactant molecule (M). The adduct is observed in the positive ion mass spectrum while its formation in the interfacial region of the microdroplet (i.e., at the air-droplet interface) is indicated by the strong dependence of the oxidation product formation on the spray distance (which reflects the droplet size and consequently the surface-to-volume ratio) and the solvent composition. Importantly, based on the screening of a ca. 21,000-compound library and the detailed consideration of six functional groups, the formation of a molecular adduct with the water radical cation is a significant route to ionization in positive ion mode electrospray, where it is favored in those compounds with X=Y moieties which lack basic groups. A set of model monofunctional systems was studied and in one case, benzyl benzoate, evidence was found for oxidation driven by hydroxyl radical adduct formation followed by protonation in addition to the dominant water radical cation addition process. Significant implications of molecular ionization by water radical cations for oxidation processes in atmospheric aerosols, analytical mass spectrometry and small-scale synthesis are noted. 
    more » « less
  3. Reactions in microdroplets can be accelerated and can present unique chemistry compared to reactions in bulk solution. Here, we report the accelerated oxidation of aromatic sulfones to sulfonic acids in microdroplets under ambient conditions without the addition of acid, base, or catalyst. The experimental data suggest that the water radical cation, (H2O)+•, derived from traces of water in the solvent, is the oxidant. The substrate scope of the reaction indicates the need for a strong electron-donating group (e.g., p-hydroxyl) in the aromatic ring. An analogous oxidation is observed in an aromatic ketone with benzoic acid production. The shared mechanism is suggested to involve field-assisted ionization of water at the droplet/air interface, its reaction with the sulfone (M) to form the radical cation adduct, (M + H2O)+•, followed by 1,2-aryl migration and C–O cleavage. A remarkably high reaction rate acceleration (∼103) and regioselectivity (∼100-fold) characterize the reaction. 
    more » « less
  4. Abstract

    Electrospray deposition of copper salt‐containing microdroplets onto the liquid surface of an electrically grounded reaction mixture leads to the formation of Cu nanoclusters, which then catalyze the azide‐alkyne cycloaddition (AAC) reaction to form triazoles. This method of in situ nanocatalyst preparation provided 17 times higher catalytic activity compared to that in the conventional catalytic reaction. The gentle landing of the Cu‐containing droplets onto the liquid surface forms a thin film of catalyst which promotes the heterogeneous AAC reaction while showing diffusion‐controlled kinetics. UV‐vis spectral characterization confirms that the catalyst is comprised of Cu nanoclusters. This unique catalytic strategy was validated using several substrates and the corresponding products were confirmed by tandem mass spectrometry (MS/MS) analysis.

     
    more » « less
  5. Abstract

    Microdroplets show unique chemistry, especially in their intrinsic redox properties, and to this we here add a case of simultaneous and spontaneous oxidation and reduction. We report the concurrent conversions of several phosphonates to phosphonic acids by reduction (R−P → H−P) and to pentavalent phosphoric acids by oxidation. The experimental results suggest that the active reagent is the water radical cation/anion pair. The water radical cation is observed directly as the ionized water dimer while the water radical anion is only seen indirectly though the spontaneous reduction of carbon dioxide to formate. The coexistence of oxidative and reductive species in turn supports the proposal of a double‐layer structure at the microdroplet surface, where the water radical cation and radical anion are separated and accumulated.

     
    more » « less
  6. Abstract

    Microdroplets show unique chemistry, especially in their intrinsic redox properties, and to this we here add a case of simultaneous and spontaneous oxidation and reduction. We report the concurrent conversions of several phosphonates to phosphonic acids by reduction (R−P → H−P) and to pentavalent phosphoric acids by oxidation. The experimental results suggest that the active reagent is the water radical cation/anion pair. The water radical cation is observed directly as the ionized water dimer while the water radical anion is only seen indirectly though the spontaneous reduction of carbon dioxide to formate. The coexistence of oxidative and reductive species in turn supports the proposal of a double‐layer structure at the microdroplet surface, where the water radical cation and radical anion are separated and accumulated.

     
    more » « less